CAPE promotes TRAIL-induced apoptosis through the upregulation of TRAIL receptors via activation of p38 and suppression of JNK in SK-Hep1 hepatocellular carcinoma cells.
نویسندگان
چکیده
Caffeic acid phenethyl ester (CAPE), a phenolic compound derived from honeybee propolis, has been reported to possess anticancer activities in several types of malignant cells. Here, we show that treatment with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in combination with CAPE significantly sensitized SK-Hep1 cells to TRAIL-induced apoptosis. The sensitization to TRAIL was accompanied by the activation of extrinsic and intrinsic apoptotic pathways, leading to the activation of caspases, mitochondrial disruption and PARP cleavage. Moreover, TRAIL receptors, such as DR4 and DR5 were significantly upregulated by CAPE treatment, and both DR4/Fc and DR5/Fc chimera markedly abrogated apoptosis induced by CAPE and TRAIL, demonstrating the critical role of these death receptors in combination-induced apoptosis. The effect of CAPE on mitogen-activated protein kinases (MAPKs) was further examined, where CAPE treatment resulted in the activation of p38 and the inhibition of JNK, without affecting levels of phospho-ERK. Our results showed that p38 and JNK exhibited the opposite role in SK-Hep1 cells. The inhibition of p38, using SB203580, blocked the CAPE-induced expression of death receptors and attenuated the combination‑induced apoptosis, suggesting the pro-apoptotic role of p38. In contrast, JNK-specific inhibition, by SP600125, triggered upregulation of DR4 and DR5, and sensitized SK-Hep1 cells to TRAIL, indicating that the CAPE-induced suppression of JNK may contribute to the sensitizing effect of CAPE through the upregulation of death receptors. Taken together, these results indicate that CAPE potentiated TRAIL-induced apoptosis in SK-Hep1 cells, through upregulation of TRAIL receptors via modulation of p38 and JNK signaling pathways.
منابع مشابه
COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis.
Cyclooxygenase (COX)-2 is upregulated in a variety of human cancers, including in hepatocellular carcinoma (HCC), whereas it is undetectable in most normal tissue. Evidence suggests that COX-2 is likely to be involved in hepatocarcinogenesis and, thus, COX-2 may be involved in an early process in carcinogenesis, dedifferentiation. To address this possibility, we investigated the effect of COX-2...
متن کاملIncreased Expression of TRAIL and Its Receptors on Peripheral T-Cells in Type 1 Diabetic Patients
Background: Type-I diabetes is an autoimmune inflammatory disease in which pancreatic ß-cells are selectively destroyed by infiltrating cells. TNF-related apoptosis-inducing ligand (TRAIL) is a type-II membrane protein of the TNF superfamily which is expressed in different tissues, including pancreas and lymphocytes. In humans, TRAIL interacts with four membrane receptors. TRAIL-R1 and TRAIL-R2...
متن کاملcFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis.
Sensitivity to TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis and the lysosomal pathway of cell death are features of cancer cells. However, it is unknown if TRAIL cytotoxic signaling engages the lysosomal pathway of cell death. Our aim, therefore, was to ascertain if TRAIL killing involves lysosomal permeabilization. TRAIL-induced apoptosis of hepatocellular carcinoma cells (...
متن کاملBortezomib overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells in part through the inhibition of the phosphatidylinositol 3-kinase/Akt pathway.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B...
متن کاملTussilago farfara L. augments TRAIL-induced apoptosis through MKK7/JNK activation by inhibition of MKK7‑TIPRL in human hepatocellular carcinoma cells.
Induction of apoptosis through activation of the TRAIL pathway is considered to be a promising anticancer strategy due to its ability to selectively induce apoptosis in cancer cells. However, the ability of cancer cells to acquire TRAIL resistance has limited the clinical translation of this approach. We previously reported that the TOR signaling pathway regulator-like (TIPRL) protein contribut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 43 4 شماره
صفحات -
تاریخ انتشار 2013